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ON THE EXPONENTIAL DECAY OF STRESSES IN CIRCULAR
ELASTIC CYLINDERS SUBJECT TO AXISYMMETRIC

SELF-EQUILIBRATED END LOADSt

J. K. KNOWLES and C. O. HORGAN

Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California

Abstract-Methods involving energy-decay inequalities are applied to the axisymmetric end problem for a
circular elastic cylinder. Explicit lower bounds in terms of Poisson's ratio are obtained for the rate ofexponential
decay of stresses, and these are compared with results of other authors.

1. INTRODUCTION

SEVERAL recent papers have examined questions connected with Saint-Venant's principle
for elastic solids in an effort to establish the exponential decay of stresses away from a
portion of the boundary which is subject to self-equilibrated surface tractions. Thus
in [1], Toupin proved that a self-equilibrated load on one end of an elastic, anisotropic
cylinder of arbitrary cross-section produces a state of deformation in which the strain
energy stored beyond a distance z from the loaded end dec~ys exponentially with z. He
further showed that the stresses at interior points in such a cylinder also obey such an
exponential law. The restriction of this latter result to strictly interior points was removed
by Roseman [2], who obtained pointwise estimates valid up to the lateral surface of the
cylinder.

In the linear theory of plane strain for isotropic elastic solids, Knowles [3] established
the exponential decay of strain energy away from a portion of the boundary carrying a
self-equilibrated load for a general class ofdomains. Stress estimates were given for interior
points.

The decay of strain energy and stresses was examined by Knowles and Sternberg [4]
for the problem of axisymmetric torsion of isotropic elastic solids of revolution.

The effect of self-equilibrated loads in nonlinear elasticity has been considered recently
by Roseman [5].

In the investigation [3] pertaining to plane strain, a single explicit decay constant,
valid for all domains of the type considered, was obtained. For axisymmetric torsion,
the results of [4] provide the rate ofdecay in terms of the root of an explicit transcendental
equation. In the more complicated case of the arbitrary cylinder as considered by Toupin
in [1], the decay constant is characterized in such a way that its explicit estimation appears
to be prohibitively difficult, even for the case of an isotropic circular cylinder.

While the arguments presented in [1], [3] and [4] all rely on energy-decay inequalities,
they differ in many important details. The present paper has as its main purpose the

tThe research of the first author was supported in part by the United States Office of Naval Research under
Contract Nonr 220(56). Reproduction in whole or in part is permitted for any purpose of the United States
Government.
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determination of an energy-decay inequality for an isotropic circular cylinder of finite
length in the presence ofaxisymmetry by an argument closely parallel to tha t used for the
plane case in [3]. For such a cylinder, subject on one end to a torsionless axisymmetric
self-equilibrated load, we prove that the strain energy decays exponentially away from the
loaded end, and we determine a decay constant explicitly. Numerical values of this constant,
which provides a lower bound for the actual rate of decay, are given for various values of
Poisson's ratio and compared with decay constants obtained for this problem by other
authors using approximate methods which could not be expected to generalize to other
geometries [6, 7].

In the following section we state the boundary value problem to be considered in
terms of stresses and displacements referred to cylindrical coordinates. In order to adapt
the procedure used in [3J to the present case, it is helpful to reformulate the problem in
terms of a pair of stress functions. This reformulation is described in Sections 3 and 4.
Properties of the strain energy and of a related function which are required in our analysis
are derived in Sections 5 and 6. The derivation of the exponential decay inequality for the
strain energy is given in Section 7. Pointwise estimates for the stresses are described briefly
in Section 8, and in Section 9 we discuss the decay constant furnished by our procedure
and compare it with results of other authors.

2. THE BOUNDARY VALUE PROBLEM

We consider a circular cylinder ofradius a and length I, and we use the natural cylindrical
coordinates r, 8, z. For torsionless axisymmetric deformations of such a cylinder, the non
vanishing components of the displacement vector u, the strain tensor e and the stress
tensor t are respectively denoted by u" Uz ; er" e99, ezz , erz ; and 'rr' '99' 'zz, 'rzo The interior
of the cylinder is designated by qj; a fixed meridional cross-section for which 0 < r < a,
o < z < 1is denoted by At.

Under the assumed condition ofaxisymmetry and in the absence of body forces, the
field equations of linear elasticity for an isotropic homogeneous material may be written
as follows.

Equilibrium equations:

Stress-strain relations:

err = 2J{err + 1: 2a( err +e90+ ezz )J
'00 = 2J{e09 + 1:2a(err+eoo+ezz)] ,

'zz = 2J{ezz+ 1:2a(err+eoo+ezz)}

(2.1)

(2.2)

(2.3)

(2.4)

(2.5)

(2.6)
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Strain-displacement relations:

aUr
err = i);'
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(2.7)

(2.8)

(2.9)

(2.10)

We assume that the shear modulus J1 and Poisson's ratio rJ satisfy the inequalities J1 > 0,
-1 <rJ<-!-.

The boundary conditions to accompany the field equations listed above are as follows:

O~z~/;

o~ r ~ a.

r = a:

z = 0:

z = I:

!rz(a, z) = !rr(a, z) = 0,

!zz(r,O) = f(r), !z,(r,O) = g(r), o~ r ~ a;

(2.11 )

(2.12)

(2.13)

(2.14)

The conditions imposed at z = 0 correspond to prescribed axisymmetric normal and
shear tractions. A necessary condition for the existence of an equilibrium state in the
cylinder is the vanishing of the total axial force:

2rr J: rf(r) dr = O.

The given functions f and g are assumed to be continuously differentiable on [0, a].
We seek a displacement field u which is twice continuously differentiable on the closed

meridional cross section .it, stress and strain fields t, e which are continuously differ
entiable on .it, and the governing equations (2.1) to (2.10) are required to hold on .it.

There are three necessary conditions for the existence of displacements, stresses and
strains satisfying (2.1H2.13) which will be of importance in the subsequent development.
First, it follows from (2.2) and the assumed smoothness of the stress field that

!rAr, z) = O(r) as r --+ 0, (2.15)

uniformly in z. Similarly, we conclude from (2.8) that the radial displacement satisfies

u,(r, z) = O(r) as r --+ 0, 0 ~ z ~ I, (2.16)

uniformly in z. Finally, it follow~rom the second of (2.12), the first of (2.11), and the
symmetry and continuity of t on vii, that

g(a) = O.

From (2.15) and the second of (2.12) it further follows that

g(r) = O(r) as r -> O.

It is assumed that the given functions.r and g satisfy (2.14), (2.17) and (2.18).

(2.17)

(2.18)
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Any two solutions of the boundary-value problem posed above differ at most by an
axisymmetric rigid body displacement.

3. STRESS FUNCTIONS

In the course of deriving expressions for stresses and displacements in terms of a
single biharmonic function in the presence ofaxisymmetry, Love [8] shows that Ur and
U z can be represented in the form

(3.1)

where the subscripts rand z on Q and qJ indicate partial derivaties,t and where Q and qJ

satisfy the differential equations

2 _ 1
V Q = Or.+-Qr+Qzz = 0, (3.2)

r

(3.3)

For our purposes it is convenient to introduce the function Xwhich is conjugate to Q in
the sense that

so that (3.1) may be written in the form

1
rUr = 2p, (Xz - rqJr),

rQ. = -Xz' (3.4)

(3.5)

The stresses following from (3.5) and (2.3) through (2.10) are easily computed. They are
given by

(3.6)

(3.7)

(3.8)

(3.9)

The representations (3.8) and (3.9) are closely analogous to corresponding formulas in
terms of Airy's stress function in plane elasticity, and it is mainly this analogy which
makes it possible to adapt the procedure used in [3].

A virtual retracing of the steps of Love's argument establishes the following statement.
A solution D, e, t of the field equations (2.1 H2.1O), with the smoothness properties stated
in the preceding section, exists if and only if there exist functions qJ and X, three times

t In the sequel, partial differentiation ofall functions except stresses, strains and displacements will be indicated
by subscripts.
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(3.10)

(3.11 )rXrr- Xr+ rxzz = °
on the closed meridional sectiont vIt.

If qJ and X are chosen in the special form

qJ = a+plogr+yz, X = pz+b+1'/r2, (3.12)

where a, P, y, b, 1'/ are constants, it may be verified through (3.6H3.9) that the correspond
ing stresses vanish identically, and that (3.10) and (3.11) are satisfied. It follows that the
special choice (3.12) of qJ and Xcorresponds to a rigid body displacement. Conversely, it is
easily shown that (3.12) represents the most general axisymmetric rigid body displacement.

continuously differentiable on JI, satisfying the differential equations

(1- (J)rV2qJ = Xrz'

4. THE BOUNDARY VALUE PROBLEM FOR qJ, X

If the stresses given in terms of qJ and Xby (3.6) through (3.9) are to satisfy the boundary
conditions (2.11) through (2.13), then qJ and X must satisfy the following boundary condi
tions.

r = a: qJrz = 0, °:::; z :::; I,

r = a: a2qJzz+aqJr- Xz = 0, O:::;z:::;1.

z = I: qJrz = 0, 0:::; r:::; a,

z = I: (rqJr)r = 0, 0:::; r:::; a.

z = 0: qJzr = -g, 0:::; r:::; a,

z = 0: (rqJr)r = rf, 0:::; r.$ a.

(4.1)

(4.2)

(4.3)

(4.4)

(4.5)

(4.6)

The order conditions (2.15) and (2.16), together with (3.9) and (3.5) require

qJrz = O(r) as r -+ 0,

Xz - rqJr = 0(r2) as r -+ 0,

(4.7a)

(4.7b)

uniformly in z, °:::; z :::; 1.
It follows from (4.1) that

qJr(a, z) = C t , 0:::; z:::; 1 (4.8)

and hence from (4.2) and (4.8) that

a2qJAa, z)- x(a, z) = -actz+c2'

where C t and C2 are constants. From (4.3) and (4.4)

(4.9)

qJAr,/) = C3 ,

rqJr(r, I) = C4 ,

0:::; r:::; a,

0:::; r:::; a,

(4.10)

(4.11)

t It has been pointed out to us by E. Sternberg that the representation (3.5) in terms of potentials Xand qJ can
be derived from Boussinesq's solution for axisymmetric problems. (See [9] for a discussion of the latter.) It is
possible to apply the representation (3.5) for axisymmetric bodies of more general shape than the circular cylinder
being considered here.
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0::;:; r::;:; a,

where C3 and C4 are constants. Equations (4.5), (4.6) imply

Ipz(r,O) - I g(p) dp +cs , (4.12)

0::;:; r::;:; a; (4.13)

Cs and C6 are constants. Integrating the uniform order condition (4.7a) with respect to z
from z to I, and using (4.11), we find that

C4Ipr(r, z) = ~+O(r) as r -40,
r

(4.14)

uniformly for °::;:; z ::;:; I.
For continuity of Ipr at r = a, z = I, it is necessary that C4 = ac l . In view of (2.14),

(4.8) and (4.13), it is further necessary that C6 = ac I to assure the continuity of Ipr at r = a,
z 0.

In order to show that the constants of integration introduced above are inessential,
we introduce ifJ and i through

Ip = ifJ+acl log r+c3z, }

X = i+aclz+c3r2-c2'
(4.15)

In view of (3.12), cP and i differ from Ip and X by terms which correspond to a rigid body
displacement. Equations (4.8H4.13) can now be converted to conditions on cP, i. Recalling
C4 ac l , C6 = ac l , we have

r = a: CPr = 0, a2ifJz - i = 0,

z = I: cpz = 0, ifJr = 0,

z = 0: cpz = G(r), ifJr = F(r),

where

G(r) = cs-c3 -1g(p)dp,

1i r

F(r) = - pf(p) dp.
r 0

At the axis, we have from (4.14), (4.15)

ifJr = O(r) as r -4 0.

In terms of ifJ, i, (4.7b) becomes

Xz - rifJr = O(r2) as r -4 0,

and thus, by (4.21)

(4.16)

(4.17)

(4.18)

(4.19)

(4.20)

(4.21 )

(4.22)
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To obtain further estimates at the axis, we return to (4.7a) and express it in terms of ip:

ipzr = OCr) as r --. O.

Integration with respect to r leads to the conclusion that

ipz = 0(1) as r --. O. (4.23)

Next, an order estimate for Xr at the axis follows from (4.23), (3.5) and the continuity of
Uz on .A. Thus

ir = OCr} as r --. O. (4.24)

Finally it is easy to prove that

ip = 0(1) as r --. O. (4.25)

The order estimates (4.21H4.25) are all uniform in z for 0 ~ z ~ I.
Since the second of (4.17) implies that ip(r,l) = constant for 0 ~ r ~ a, and since an

arbitrary constant can be added to ip without affecting the differential equations or boun
dary conditions, we may assume that

ip(r, I) = 0, O~r~a. (4.26)

(4.27)

(4.28)

(4.29)

(4.30)

(4.31)

(4.32)

(4.33)

(4.34)cP = 0(1),

o~ z ~ l,

O~r~a,

O~r~a,

o~ r ~ a.

on .A,

o~ z ~ l,

cP = 0,

fPz = 0,

CPr = F,

Xr = OCr),

rXrr - Xr + rxu = 0,

fPr = 0,

a2(fJz-X = 0,

fPz = G,

0(1),

r = a:

r = a:

z = l:

z = I:

z = 0:

CPr = O(r),r--'O:

We now summarize the boundary value problem in final form, dropping the tildes for
convenience. We seek functions (fJ, X, three times continuously differentiable on .A, satisfy
ing the following differential equations and boundary conditions.

r(l-a)V 2 (fJ (l-a)[(r(fJr)r+rcpzz] = Xrz' on .A,

uniformly in z for 0 ~ z ~ l. The functions F and G are defined in (4. 19}, (4.20).
The order conditions (4.34) at r = 0 are sufficient to assure that the solution Xof (4.28)

is infinitely differentiable in rand z on the z-axis. (See [10].) It may therefore be assumed
that X is infinitely differentiable for 0 ~ r < a, 0 < z < l. This differentiability in turn
implies that the solution (fJ of (4.27) is infinitely differentiable for 0 ~ r < a, 0 < Z < l.
(See p. 345 of [11].)

Assuming the existence of a solution to the boundary value problem posed above, we
now derive a "conservation property" of the solution. Integrating (4.27) with respect to r
from r = 0 to r = a for fixed z and using (4.29) and (4.34), we find that

(1- 0') f rfPzz(r, z} dr = Xz(a, z).
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Using (4.30) we may write this in the form

:Z22[(1- a) 1: np(r, z) dr a2qJ(a, z)] = 0.

Integrating with respect to z and using (4.32), (4.31) we find

(1 a) 1: rqJ(r, z) dr-a2qJ(a, z) = 0, 0 s z s I.

5. STRAIN ENERGY AND ITS REPRESENTATION

(4.35)

(4.36)t

Under the prevailing conditions ofaxisymmetry, the strain energy U(O contained in
that portion of the cylinder for which ( s z s I is given by

where

U(() = 21£f[W{'t)r dr dz, Os ( s t, (5.1)

(5.2)

An alternate formula for U(() is supplied by the work-energy relation which states that
2U(() is equal to the work done on the subcylinder for which ( s z s t by the surface
tractions acting on the boundary. Thus

2U(() = -21£ 1: ['zr(r,Our(r,O+'zz(r,Ouk,O]rdr. (5.3)

(5.4)

To obtain a representation for U(O in terms of the stress functions qJ and X' we proceed
from (5.3) as follows. From (3.5), (3.8) and (3.9),

U(z) - 2: 1: [qJrz(rqJr- xz)+(rqJr)r(~Xr-qJz) ] dr,

where the derivatives of qJ and X in the integrand are evaluated at r, z. From (5.4) it follows
that

2p! ra

[ (1 )-~U (z) = J
o

qJrzz(rqJr-Xz)+qJrz(rqJrz-Xzz)+(rqJrz)r -;.Xr-qJz

+(rqJr)rUXrz-qJzz) ] dr,

(5.5)

t By differentiating (4.36) and setting z = 0, it is possible to show that the constant c~ - C3 appearing in (4.19)
is given by

fa ( I (J r
2

)Cs -c, = 1+--"2 g(r) dr.
o I +(J a
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(5.6)

where the prime indicates differentiation with respect to z. Suitable integrations by parts
then yield

2 [ Jr=a [(1 )Jr=a----.!!. U'(z) = <pzir(j)r - Xz) + r<prz - Xr <pz
n r= 0 r r= 0

+ J: {<Pzz[Xrz-(r<pr)rJ+<Prir<Prz-Xzz)

+r<pr{<Prz- UXr)'J+(r<pr)rUXrz-<Pzz)} ~r.
Those terms in (5.6) which involve boundary values of derivatives of <P and X may be
simplified with the aid of the boundary conditions (4.29), (4.30) and (4.34). After such a
simplification and a rearrangement of the integrand, (5.6) furnishes

+ J:[XrzV2<p +2r<p;z-<Prz(Xrr-~Xr+ Xzz) - 2(r<Pr)r<Pzz] dr.

The differential equations (4.27), (4.28), together with (5.7), then imply

(5.7)

(5.8)

(5.9)

- 211 U'(z) = - a2(j);z(a, z)+ (" [(1- a-)r(V2<p)2 +2r<p;z - 2(r<Pr)r<Pzz] dr.
1C Jo

Since U(l) = 0, integration of (5.8) gives

211 II {num = , -a2<p;z(a, z)

f"[ 2 1 2 2 J }+J
o

(l-o-)r<pzz+(l-O')-;:(r(j)r)r +2r<prz-20'(r<Pr)r<Pzz dr dz,

for any ( between 0 and 1.
The expression (5.9) does not involve the stress function X; apart from the boundary

term - a2(j);z(a, z), (5.9) is analogous to the corresponding formula in plane strain.t

6. AN AUXILIARY QUADRATIC FUNCTIONAL

For our ultimate purposes, it is more convenient to use a quadratic functional similar
to, but simpler than, the strain energy U«() discussed in the preceding section. Define
V(O by

~V«() = f{-a2<p;.(a, z)+(1-0') J: [r(j);z+2r<p;z+~(rq1r); Jdr }dZ, (6.1)

for 0 ::::; ( ::::; 1. Reference to (5.9) shows that when 0' = 0, U«() == V(O; we shall examine
the relation between V and V for non-zero values of Poisson's ratio later in this section.

tFor 11 = 0, (5.9) may be compared with (3.1) of [3].
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To simplify the notation and to make clear the analogy between the subsequent argu
ment in the present paper and that given in [3J for plane strain, it is useful to introduce a
suitable scalar product for functions continuous on the interval 0 :-s;; r :-s;; a. For any two
such functionsfand g, define

(f,g) = -a2j'(a)g(a)+(l-a) J: rf(r)g(r) dr.

In view of (4.36), the stress function cP satisfies the condition

(6.2)

(cp, I) = 0, o :-s;; z :-s;; I. (6.3)t

(6.4)

In general, the inequality (fJ) :;:::: 0 will not hold for an arbitrary continuous function f
We will make use of the following alternative sufficient conditions for the positivity of

ern:
(a) Iff is continuous on [0, aJ andf(a) = 0, then (fJ) :;:::: 0, with strict inequality hold

ing unlessf == O.
(b) Iff is continuous on [O,aJ and (f, I) = 0, then (fJ):;:::: 0, with strict inequality

holding unless f == O.
The result in (a) is immediate from (6.2) withf = g. The proof of (b) involves a straight
forward application of the Schwarz inequality to the integral appearing in the definition
of (fJ) and depends on the fact that a < t.

In terms of the scalar product (6.2), (6.1) can be written in the form

2J1 r' [ f.a 1 ]~V(() = J~ (cpzz,cpzz)+2(cprz,cprz)+(l-a) 0 -;:(rCPr);dr dz.

Since (6.3) implies that

O:-s;; z :-s;; I, (6.5)

and since CPu vanishes at r = a, it may be concluded that each of the three terms in the
integrand of (6.4) is nonnegative.

In the following section we shall derive an exponential decay formula for V(z). To
carry out this derivation, and to show that such an exponential decay law can in turn be
used to estimate U(z), we require the following three properties of V.

(i) 2J1 V'(z) = -(CPzz' cpzz)-2(CPrz, cprz)-(I-a) f.a ~(rCPr); dr,
nor

2J1 fl
(ii) ~ V(() d( = (CPz' cpz)-(cp, cpzz)+(CPr, CPr)'

n z

(iii) 0 < (1-~) V(z):-s;; U(z):-s;; (I+~) V(z)
I-a I-a

(6.6)

(6.7)

(6.8)

(6.6), (6.7) and (6.8) hold for 0 :-s;; z :-s;; I.
Property (i) follows immediately from (6.4) upon differentiation with respect to (.

To establish property (ii), we proceed from (6.6). Using primes to indicate differentiation

t To avoid excessively cumbersome formulas. we do not explicitly indicate that Cr. g) depends on z whenf
and g are functions of z as well as r.
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with respect to z, we have

(CPzz' cpzz) = (CPz, cpzz)' -(CPz' cpzzz)

= l(cpz' cpz)" -(cp, cpzzz)' +(cp, cpzzzz)

= l(cpz' cPzY' -(cp, cpzzY' +(CPz, cpzz)' +(cp, cpzzzz)

= (CPz, cPzY' -(cp, cpzz)" +(cp, cpzzzz)

Next,

= 1(cP" CPr)" - (1 - a)J: rcprCPrzz dr

= 1(cP" CPr)" +(1- a)J: cp(rCPrzz)r dr

Substituting (6.9) and (6.10) into (6.6), we find

2
I1 V '(z) = -[(cpz,cpz)-(CP,CPzz)+(CP"CPr)]"

7t
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(6.9)

(6.10)

(6.11 )

Integration by parts and the differential equations and boundary conditions satisfied by
cP, Xcan be used to show that

so that (6.11) becomes

(6.12)

(6.13)

Integrating twice and using V(l) = cp(r, I) = cpz(r, I) = CPr(r, I) = 0, we find

211 I'- V(z) dz = (CPz' cpz) - (cp, cpzz)+ (cp" CPr)'
7t ,

which is precisely (6.7).
The inequalities (6.8) show that an upper bound for either of the two functionals U(z),

V(z) supplies an upper bound for the other. To prove (6.8), we first observe that (5.8) can
be written in the form

(6.14)
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I = (1-0-) J: (npr)rtpzz dr. (6.1 5)

10-1 2J.1, 2J.1, 10-1
--1-[2(tprz' tprz) + 21II] ::; --U (z)+- V (z)::; -1--." [2(tprz' tprz)+2IIIJ. (6.16)

-0- 1t 1t -0-

It remains to estimate Ill. To this end, define !/J through

tpzir, z) = tpzz(a, z)+ !/J(r, z). (6.17)

Since tpr(a, z) == 0, (6.15) can be written as

I = (1- a) J: (rtpr)r!/J dr.

Because of the inequality Ixyl ::; 1(x2+y2), (6.18) implies

fa l-afa 1 l-afa
III .:s; (1-0-) J

o
r-tl(rq>r)rlrtl!/JI dr ::; -2-J

o
-,:(rtpr); dr+-

2
-Jo r!/J2 dr.

From (6.17) and the second of (6.5), it follows easily that

fa 2 1+ 0- 2 2
(I-a) J

o
r!/J dr = (tpzz' tpzz)--2-a tpzz(a, z) ::; (tpzz' tpzz),

so that (6.19) implies

I-a fa 1 2 1
Ill::; -2-J

o
-,:(rtpr)r dr+2(tpzz,q>zz)'

From (6.20), it follows with the aid of (6.6) that

fa 1 2J.1
2(tprz' tprz)+2l11 ::; 2(tprz' tprz)+(l-o-) -(rtpr); dr+(tpzz, tpzz) = -- V'(z).

o r 1t

Substitution from (6.21) into (6.16) gives

_~[_ 2J.1 V (Z)] ::; _2J.1 U'(z)+ 2Jl V (z)::; ~[_ 2/l V/(Z)],
1-0- 1t 1t 1t I-a 1t

from which

(1-~)[-V'(z)] .:s; - U'(z) .:s; (1 +~)[-V'(z)].
1-0- 1-0-

Integration from z to 1, together with V(l) U(l) = 0, finally furnishes

(1-110'10') V(z) .:s; U(z) ::; (1 + Il.?'l 0-) V(z).

Since 0- < t implies 1 10'1(1-0-)-1 > 0, the proof of (6.8) is complete.

(6.18)

(6.19)

(6.20)

(6.21)

(6.22)
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7. ENERGY DECAY ESTIMATES

Properties (i) and (ii) of V(z), as expressed by (6.6) and (6.7), are strictly analogous to
the corresponding formulas derived in [3J for the case of plane strain.t It is therefore
natural to expect that an argument similar to that used in [3J can be applied here to derive
an exponential decay inequality for V(z). In the present section we shall show that

V(z) S 2V(O) exp( - 2kz), (7.1 )

where the decay constant k is characterized as a root of a certain transcendental equation
involving Bessel functions. From the two inequalities in (6.8), it then follows immediately
that the strain energy U(z) satisfies

(
l-a+lal)U(z) S 2 1 I U(O) exp( - 2kz),
-a- al

Oszsl. (7.2)

We turn now to the proof of (7.1), which we carry out in two steps.
First, let k be an arbitrary positive constant and define S by

S(z) = V(z)+2k f V(Od(, 0 s z S [.

Then, using (7.3), (6.6) and (6.7)

S'(z)+2kS(z) = V'(z)+4k 2 f V«() d(

IT fa1= --2 {(q>zz, q>zz)+2(q>r%' q>,z)+(I-a) -(rq>,); dr
~ or

-4P(q>z, q>z) +4k2(q>, q>zz)-4P(q>" q>,)}

IT { k2 2 fa 1 2= --2 (q>zz+2 q>,q>zz+2k q»+(I-a) -(rq>,), dr
~ 0 r

-4P(q>" q>,)-4k4 (q>, q»

+ 2(q>r%' q>,z)-4k2(q>z, q>z)}·

(7.3)

(7.4)

Since q> and q>zz respectively satisfy (6.3) and the second of (6.5), the linear combination
q>zz+2k2 q> satisfies (q>zz +2k 2 q>, 1) = 0, and therefore

(7.5)

so that (7.4) implies

S'(z)+2kS(z) s - ;~ {(I-a) J: ~(rq>,); dr-4k 2(cp" q>,)

}
(7.6)

-4k4 (q>, q>)+2(q>,z' q>,z)-4k2 (q>z, q>z) .

tWith a suitable redefinition of the scalar product appearing in (6.7), this equation becomes identical with
equation (3.9) of [3].
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To determine a positive value of k that makes the right side of(7.6) non-positive, we make
use of the following two lemmas concerning eigenvalue problems.

LEMMA I. Let l/J be continuously differentiable on [0, a], and suppose that

Then

l/J(a) = 0, l/Jr(r) = O(r), as r -+ 0.

J: r-1l/J; dr ~ ;'1 J: r- 1l/J2 dr,

where AI is the smallest eigenvalue of the problem

(r-ll/Jr)r+Ar-ll/J = ° onO < r ~ a,

I/J = O(r) as r -+ 0, I/J(a) = 0.

(7.7)

(7.8)

(7.9)

LEMMA II. Let 0 be continuously differentiable on [0, a], and suppose that (0,1) = 0.
Then

s: rO; dr ~ An(O,O),

where An is the smallest positive eigenvalue of the problem

(r8r)r+(1-a)Ar8 = ° on °~ r ~ a,

8r(a) +Aa8(a) = 0, 8(r) = O( 1) as r -+ 0.

(7.10)

(7.11)

(7.12)

These lemmas are analogous to results employed in [1], [3], [4].t
We apply (7.7) and (7.10) repeatedly in (7.6) as follows. In Lemma I, choose l/J = r<pr

to conclude that

(7.13)

Since (<pz, 1) = 0, the choice 0 = <pz in Lemma II is permissible, and it may be concluded
that

(<PzY' <Pzr) = (1- a) s: r<p;r dr ~ (1- a)An(<P" <pz)·

Furthermore (<p, 1) = °so that Lemma II with 0 = <P may be used to show that

(<p" <Prj = (1-a) { r<p; dr ~ (l-a)An(<p, <pl·

From (7.13), (7.14) and (7.6)

1C
S'(z)+ 2kS(z) ~ - 2p. {(AI- 4k 2)(<p" <Prj - 4k4 (<p, <p)

+[2(1- a)An- 4k2
] (<Pz' <pz)}·

(7.14)

(7.15)

(7.16)

t Lemmas I and II may be established by appropriate adaptations of Jacobi's method of multiplicative varia
tion. See [12], pp. 458-459.
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If k is now required to satisfy
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(7.17)AI -4k2 > 0,

(7.15) may be used in (7.16) to obtain

S'(z)+ 2kS(z) ::;: -2~ {(AI - 4k2
)(1-<T)A1I- 4k4 Hq>, q>)+ [2(1- <T)AlI 4k2J(q>z' q>z)}. (7.18)

If k is further restricted so that

(AI-4P)(I-<T)An-4k4 ~ 0,

2(1-<T)I'1I-4P ~ 0,

(7.18) becomes

S'(z) +2kS(z) ::;: 0,

from which

S(z) ::;: S(O) exp( - 2kz).

(7.19)

(7.20)

(7.21)

The polynomial in k appearing in (7.19) is monotone decreasing in k for k > 0 and has
one positive root k* given by

(7.22)

The largest value of k satisfying the three restrictions (7.17), (7.19) and (7.20) is given by

(7.23)

It is easy to show from (7.22) that k* ::;: 1-JAI' so that (7.23) may be replaced by

Direct calculation also shows that (7.24) may be written in the form

[
J {(1- <T)2AfJ +(1-

2
<T)A.IAlI } - (1- <T)AlIJi

. if AI < 3(1- <T)AlI

k=

(7.24)

(7.25)

Thus the exponential decay inequality (7.21), with k given by (7.25), has been established
for S(z).

The second step in the proof consists in showing tha t (7.21) implies (7.1). This portion
of the argument is identical with the corresponding one employed in [3]. From (7.3),
(7.21) it follows that

V(z) ::;: S(z) ::;: 8(0) exp( - 2kz), (7.26)
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so that it is only necessary to estimate 5(0). Upon inserting (7.3) into (7.21), it is found
that

d fl__ [e- Zkz V(O d(J ~ S(O) e- 4kz.
dz z

Integration from z = 0 to z = t yields

f~ V(Od( ~ Sd~)(1-e-4kl)= :k[V(0)+2kLV(Z)dZ] (1-e- 4kl ).

When this inequality is solved for the integral of V, it is found that

I
' 1_e-4kl

2k V(z) dz ~ -4kl V(O) ~ V(O).
o l+e

Together, (7.29) and (7.3) show that

S(O) ~ 2V(O),

so (7.26) furnishes

V(z) ~ 2V(O) exp( - 2kz).

This completes the derivation of (7.1).

8. STRESS ESTIMATES

(7.27)

(7.28)

(7.29)

At an interior point (r, e, z) of the cylinder the stress components may be estimated
in terms of the strain energy by methods based on mean value theorems of the theory of
elasticity, [lJ, [2J, [3J, [4]. Let r stand for anyone of the four nonvanishing cylindrical
components of the stress tensor 'to It is knownt that

o~ r < a, 0 < z < t, (8.1)

where b is the distance from the point (r, e, z) to the boundary of the cylinder, and K 1 is
a constant depending on J1 and a.

Roseman [2J has shown that an interior estimate of the type (8.1) may be replaced by
an estimate valid up to the boundary of the cylinder. His result, which is valid for a cylinder
whose cross-section is bounded by a sufficiently smooth simple closed curve, makes it
possible to assert that, in the present case,

o ~ r ~ a, a ~ z ~ t, (8.2)

where a is the radius of the cylinder and K z is a constant depending on the properties of
the material.

Either of the inequalities (8.1) or (8.2), together with (7.2), shows that the stresses satisfy
an inequality of the type

Ir(r, z)1 ~ K exp( -kz),

t See Lemma 2 and equation (4.15) of[4].

(8.3)
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where K is a constant and k is given by (7.25). Thus k provides a lower bound for the rate
of exponential decay of stresses away from the loaded end of the cylinder. Since our
interest here is mainly directed toward this rate of decay, we do not discuss the explicit
determination of the constants K 1 and K z appearing in (8.1) and (8.2), respectivelyt.

The total energy U(O) appearing in (7.2) can be estimated by the application of an
appropriate minimum principle, but we shall not carry out such a calculation here. Such
estimates have been obtained in similar contexts in [3J and [4]. A different type of upper
bound for the total strain energy for a cylinder of square cross-section has been con
structed by Dou [13].

9. THE DECAY CONSTANT

The eigenvalue AI of the problem represented by (7.8), (7.9) is given by

AI = sZ/a2

where s is the smallest positive root of

J 1(s) =0,

(9.1)

(9.2)

and I n denotes the Bessel function of order n. From the eigenvalue problem (7.11), (7.12),
An is determined as

where t is the smallest positive root of

- J(l- (J)J t[J{l-(J)tJ + tJo[J{l-(J)tJ = O.

(9.3)

(9.4)t

Once At and All are determined, the decay rate k is computed in accordance with (7.25).
In [6J, Horvay and Mirabal consider a semi-infinite circular cylinder under axisym

metric self-equilibrated end loads. Their analysis is based on a variational approxima
tion, and it permits the approximate calculation of the rate of decay of stresses with what
would appear to be substantial accuracy. In Table 1, numerical values of the decay rate
obtained by these authors are compared with values of ak, with k computed from (7.25).

TABLE I. DECAY CONSTANT k FOR VARIOUS VALUES OF POISSON'S RATIO

Poisson's
ratio, (J

o
1.
4
J

TO
1
>:

ak, with k
computed from (7.25)

1·3
1·4
1·4
1·5

(decay constant) xa, from
Horvay and Mirabal [6)

2,5*
2·7*§
2·7t
2·8t

* Estimated f,om Fig. 2 of [6].
t Given to four decimal places in equation (8a) of [6].
t Given to three decimal places in equation (40b) of [6].
§ See also Table 9, p. 395, of [7].

t K1 is given explicitly in [4].
t Roots of (9.4) were obtained with the aid of the tables in [14].
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From the table it is observed that k is small by a factor of about one-half when compared
with the results of Horvay and Mirabal, whose estimates in turn probably agree with
the exact values to the first decimal place.
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AOcTpaKT-McnOJIh3YIOTCH MeTOllhl 3aKJIIO'laIOIUlle HepaBeHcTBa 3aTyxaHIIH 3HeprHH llJIlI onpelleJIeHHlI
KpaeBoH 3alla'lll Kpymoro ynpyroro ~IIJIIIHllpa.nOJIY'IaIOTCH BllBHOM BIIAe HlflKHhIe npelleJIhl BBhlpalKeHHHx
K03</J</Jlf~lIeHTa nyaccoHa AJIH CKOpOCTI1 3KcnOTeH~l1aJIhHOrO laTyxaHl1lI 3Heprlfl1. OHlf CpaBHl1BalOTCli
c pe3YJIhTaTaMl1 APyrltlx aBTopoB.


